Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 652
Filtrar
1.
mBio ; 14(5): e0181823, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37655893

RESUMO

IMPORTANCE: Herpes simplex virus-1 (HSV-1) is a human pathogen known to cause cold sores and genital herpes. HSV-1 establishes lifelong infections in our sensory neurons, with no cure or vaccine available. HSV-1 can reactivate sporadically and travel back along sensory nerves, where it can form lesions in the oral and genital mucosa, eye, and skin, or be shed asymptomatically. New treatment options are needed as resistance is emerging to current antiviral therapies. Here, we show that interferons (IFNs) are capable of blocking virus release from nerve endings, potentially stopping HSV-1 transmission into the skin. Furthermore, we show that IFNγ has the potential to have widespread antiviral effects in the neuron and may have additional effects on HSV-1 reactivation. Together, this study identifies new targets for the development of immunotherapies to stop the spread of HSV-1 from the nerves into the skin.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 1/fisiologia , Interferons , Células Receptoras Sensoriais/patologia , Axônios/patologia , Antivirais
2.
Nature ; 618(7964): 402-410, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225994

RESUMO

Membrane-shaping proteins characterized by reticulon homology domains play an important part in the dynamic remodelling of the endoplasmic reticulum (ER). An example of such a protein is FAM134B, which can bind LC3 proteins and mediate the degradation of ER sheets through selective autophagy (ER-phagy)1. Mutations in FAM134B result in a neurodegenerative disorder in humans that mainly affects sensory and autonomic neurons2. Here we report that ARL6IP1, another ER-shaping protein that contains a reticulon homology domain and is associated with sensory loss3, interacts with FAM134B and participates in the formation of heteromeric multi-protein clusters required for ER-phagy. Moreover, ubiquitination of ARL6IP1 promotes this process. Accordingly, disruption of Arl6ip1 in mice causes an expansion of ER sheets in sensory neurons that degenerate over time. Primary cells obtained from Arl6ip1-deficient mice or from patients display incomplete budding of ER membranes and severe impairment of ER-phagy flux. Therefore, we propose that the clustering of ubiquitinated ER-shaping proteins facilitates the dynamic remodelling of the ER during ER-phagy and is important for neuronal maintenance.


Assuntos
Autofagia , Estresse do Retículo Endoplasmático , Retículo Endoplasmático , Proteínas Ubiquitinadas , Ubiquitinação , Animais , Humanos , Camundongos , Autofagia/genética , Retículo Endoplasmático/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Ubiquitinadas/metabolismo , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia , Membranas Intracelulares/metabolismo
3.
Exp Neurol ; 365: 114428, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37100111

RESUMO

Ketogenic diets are emerging as protective interventions in preclinical and clinical models of somatosensory nervous system disorders. Additionally, dysregulation of succinyl-CoA 3-oxoacid CoA-transferase 1 (SCOT, encoded by Oxct1), the fate-committing enzyme in mitochondrial ketolysis, has recently been described in Friedreich's ataxia and amyotrophic lateral sclerosis. However, the contribution of ketone metabolism in the normal development and function of the somatosensory nervous system remains poorly characterized. We generated sensory neuron-specific, Advillin-Cre knockout of SCOT (Adv-KO-SCOT) mice and characterized the structure and function of their somatosensory system. We used histological techniques to assess sensory neuronal populations, myelination, and skin and spinal dorsal horn innervation. We also examined cutaneous and proprioceptive sensory behaviors with the von Frey test, radiant heat assay, rotarod, and grid-walk tests. Adv-KO-SCOT mice exhibited myelination deficits, altered morphology of putative Aδ soma from the dorsal root ganglion, reduced cutaneous innervation, and abnormal innervation of the spinal dorsal horn compared to wildtype mice. Synapsin 1-Cre-driven knockout of Oxct1 confirmed deficits in epidermal innervation following a loss of ketone oxidation. Loss of peripheral axonal ketolysis was further associated with proprioceptive deficits, yet Adv-KO-SCOT mice did not exhibit drastically altered cutaneous mechanical and thermal thresholds. Knockout of Oxct1 in peripheral sensory neurons resulted in histological abnormalities and severe proprioceptive deficits in mice. We conclude that ketone metabolism is essential for the development of the somatosensory nervous system. These findings also suggest that decreased ketone oxidation in the somatosensory nervous system may explain the neurological symptoms of Friedreich's ataxia.


Assuntos
Ataxia de Friedreich , Animais , Camundongos , Ataxia de Friedreich/patologia , Camundongos Knockout , Cetonas , Oxirredução , Células Receptoras Sensoriais/patologia
4.
Sci Rep ; 12(1): 21318, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494423

RESUMO

Proprioceptive sensory neurons (pSN) are an essential and undervalued part of the neuromuscular circuit. A protocol to differentiate healthy and amyotrophic lateral sclerosis (ALS) human neural stem cells (hNSC) into pSN, and their comparison with the motor neuron (MN) differentiation process from the same hNSC sources, facilitated the development of in vitro co-culture platforms. The obtained pSN spheroids cultured interact with human skeletal myocytes showing the formation of annulospiral wrapping-like structures between TrkC + neurons and a multinucleated muscle fibre, presenting synaptic bouton-like structures in the contact point. The comparative analysis of the genetic profile performed in healthy and sporadic ALS hNSC differentiated to pSN suggested that basal levels of ETV1, critical for motor feedback from pSN, were much lower for ALS samples and that the differences between healthy and ALS samples, suggest the involvement of pSN in ALS pathology development and progression.


Assuntos
Esclerose Amiotrófica Lateral , Humanos , Esclerose Amiotrófica Lateral/patologia , Neurônios Motores/fisiologia , Células Receptoras Sensoriais/patologia , Fibras Musculares Esqueléticas/patologia , Diferenciação Celular
5.
Cell Mol Life Sci ; 79(4): 193, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35298717

RESUMO

Aberrant insulin-like growth factor 1 (IGF-1) signaling has been proposed as a contributing factor to the development of neurodegenerative disorders including diabetic neuropathy, and delivery of exogenous IGF-1 has been explored as a treatment for Alzheimer's disease and amyotrophic lateral sclerosis. However, the role of autocrine/paracrine IGF-1 in neuroprotection has not been well established. We therefore used in vitro cell culture systems and animal models of diabetic neuropathy to characterize endogenous IGF-1 in sensory neurons and determine the factors regulating IGF-1 expression and/or affecting neuronal health. Single-cell RNA sequencing (scRNA-Seq) and in situ hybridization analyses revealed high expression of endogenous IGF-1 in non-peptidergic neurons and satellite glial cells (SGCs) of dorsal root ganglia (DRG). Brain cortex and DRG had higher IGF-1 gene expression than sciatic nerve. Bidirectional transport of IGF-1 along sensory nerves was observed. Despite no difference in IGF-1 receptor levels, IGF-1 gene expression was significantly (P < 0.05) reduced in liver and DRG from streptozotocin (STZ)-induced type 1 diabetic rats, Zucker diabetic fatty (ZDF) rats, mice on a high-fat/ high-sugar diet and db/db type 2 diabetic mice. Hyperglycemia suppressed IGF-1 gene expression in cultured DRG neurons and this was reversed by exogenous IGF-1 or the aldose reductase inhibitor sorbinil. Transcription factors, such as NFAT1 and CEBPß, were also less enriched at the IGF-1 promoter in DRG from diabetic rats vs control rats. CEBPß overexpression promoted neurite outgrowth and mitochondrial respiration, both of which were blunted by knocking down or blocking IGF-1. Suppression of endogenous IGF-1 in diabetes may contribute to neuropathy and its upregulation at the transcriptional level by CEBPß can be a promising therapeutic approach.


Assuntos
Envelhecimento/metabolismo , Axônios/patologia , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Metabolismo Energético , Fator de Crescimento Insulin-Like I/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , Axônios/efeitos dos fármacos , Axônios/metabolismo , Sequência de Bases , Proteína beta Intensificadora de Ligação a CCAAT/genética , Respiração Celular/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Metabolismo Energético/efeitos dos fármacos , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Células HEK293 , Humanos , Fator de Crescimento Insulin-Like I/genética , Fígado/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fatores de Transcrição NFATC/metabolismo , Crescimento Neuronal/efeitos dos fármacos , Polímeros/metabolismo , Regiões Promotoras Genéticas/genética , Transporte Proteico/efeitos dos fármacos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/patologia , Transdução de Sinais/efeitos dos fármacos
6.
Front Endocrinol (Lausanne) ; 13: 1047943, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605943

RESUMO

Osteoarthritis pain is often thought of as a pain driven by nerves that innervate the soft tissues of the joint, but there is emerging evidence for a role for nerves that innervate the underlying bone. In this mini review we cite evidence that subchondral bone lesions are associated with pain in osteoarthritis. We explore recent studies that provide evidence that sensory neurons that innervate bone are nociceptors that signal pain and can be sensitized in osteoarthritis. Finally, we describe neuronal remodeling of sensory and sympathetic nerves in bone and discuss how these processes can contribute to osteoarthritis pain.


Assuntos
Doenças Ósseas , Osteoartrite , Humanos , Dor/etiologia , Osteoartrite/complicações , Osteoartrite/patologia , Osso e Ossos/patologia , Células Receptoras Sensoriais/patologia
7.
Cells ; 10(12)2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34944001

RESUMO

Dense tumor innervation is associated with enhanced cancer progression and poor prognosis. We observed innervation in breast, prostate, pancreatic, lung, liver, ovarian, and colon cancers. Defining innervation in high-grade serous ovarian carcinoma (HGSOC) was a focus since sensory innervation was observed whereas the normal tissue contains predominantly sympathetic input. The origin, specific nerve type, and the mechanisms promoting innervation and driving nerve-cancer cell communications in ovarian cancer remain largely unknown. The technique of neuro-tracing enhances the study of tumor innervation by offering a means for identification and mapping of nerve sources that may directly and indirectly affect the tumor microenvironment. Here, we establish a murine model of HGSOC and utilize image-guided microinjections of retrograde neuro-tracer to label tumor-infiltrating peripheral neurons, mapping their source and circuitry. We show that regional sensory neurons innervate HGSOC tumors. Interestingly, the axons within the tumor trace back to local dorsal root ganglia as well as jugular-nodose ganglia. Further manipulations of these tumor projecting neurons may define the neuronal contributions in tumor growth, invasion, metastasis, and responses to therapeutics.


Assuntos
Cistadenocarcinoma Seroso/patologia , Tecido Nervoso/patologia , Neoplasias Ovarianas/patologia , Animais , Cistadenocarcinoma Seroso/diagnóstico por imagem , Modelos Animais de Doenças , Feminino , Gânglios Espinais/metabolismo , Camundongos Endogâmicos C57BL , Tecido Nervoso/diagnóstico por imagem , Neoplasias Ovarianas/diagnóstico por imagem , PTEN Fosfo-Hidrolase/metabolismo , Células Receptoras Sensoriais/patologia , Proteína Supressora de Tumor p53/metabolismo , Ultrassonografia
8.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830245

RESUMO

Although histamine is a well-known itch mediator, histamine H1-receptor blockers often lack efficacy in chronic itch. Recent molecular and cellular based studies have shown that non-histaminergic mediators, such as proteases, neuropeptides and cytokines, along with their cognate receptors, are involved in evocation and modulation of itch sensation. Many of these molecules are produced and secreted by immune cells, which act on sensory nerve fibers distributed in the skin to cause itching and sensitization. This understanding of the connections between immune cell-derived mediators and sensory nerve fibers has led to the development of new treatments for itch. This review summarizes current knowledge of immune cell-derived itch mediators and neuronal response mechanisms, and discusses therapeutic agents that target these systems.


Assuntos
Anti-Inflamatórios/uso terapêutico , Histamina/imunologia , Fatores Imunológicos/uso terapêutico , Prurido/imunologia , Receptores Histamínicos H1/imunologia , Células Receptoras Sensoriais/imunologia , Anticorpos Monoclonais/uso terapêutico , Citocinas/antagonistas & inibidores , Citocinas/imunologia , Citocinas/metabolismo , Expressão Gênica , Histamina/metabolismo , Antagonistas dos Receptores Histamínicos/uso terapêutico , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Linfócitos/patologia , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Células Mieloides/patologia , Neuropeptídeos/antagonistas & inibidores , Neuropeptídeos/imunologia , Neuropeptídeos/metabolismo , Peptídeo Hidrolases/imunologia , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/uso terapêutico , Prurido/tratamento farmacológico , Prurido/genética , Prurido/patologia , Receptores Histamínicos H1/genética , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/patologia , Pele/efeitos dos fármacos , Pele/imunologia , Pele/inervação , Pele/patologia
9.
Acta Neuropathol Commun ; 9(1): 183, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34784974

RESUMO

Sensory neurons have recently emerged as components of the tumor microenvironment. Nevertheless, whether sensory neuronal activity is important for tumor progression remains unknown. Here we used Designer Receptors Exclusively Activated by a Designer Drug (DREADD) technology to inhibit or activate sensory neurons' firing within the melanoma tumor. Melanoma growth and angiogenesis were accelerated following inhibition of sensory neurons' activity and were reduced following overstimulation of these neurons. Sensory neuron-specific overactivation also induced a boost in the immune surveillance by increasing tumor-infiltrating anti-tumor lymphocytes, while reducing immune-suppressor cells. In humans, a retrospective in silico analysis of melanoma biopsies revealed that increased expression of sensory neurons-related genes within melanoma was associated with improved survival. These findings suggest that sensory innervations regulate melanoma progression, indicating that manipulation of sensory neurons' activity may provide a valuable tool to improve melanoma patients' outcomes.


Assuntos
Melanoma/genética , Melanoma/patologia , Células Receptoras Sensoriais/patologia , Animais , Comportamento Animal/efeitos dos fármacos , Biópsia , Linhagem Celular Tumoral , Simulação por Computador , Progressão da Doença , Humanos , Vigilância Imunológica , Linfócitos/patologia , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Células Receptoras Sensoriais/metabolismo , Fatores Supressores Imunológicos , Microambiente Tumoral
10.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638865

RESUMO

Neuronal morphological changes in the epidermis are considered to be one of causes of abnormal skin sensations in dry skin-based skin diseases. The present study aimed to develop an in vitro model optimised for human skin to test the external factors that lead to its exacerbation. Human-induced pluripotent stem cell-derived sensory neurons (hiPSC-SNs) were used as a model of human sensory neurons. The effects of chemical substances on these neurons were evaluated by observing the elongation of nerve fibers, incidence of blebs (bead-like swellings), and the expression of nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2). The nerve fiber length increased upon exposure to two common cosmetic preservatives-methylparaben and phenoxyethanol-but not to benzo[a]pyrene, an air pollutant at the estimated concentrations in the epidermis. Furthermore, the incidence of blebs increased upon exposure to benzo[a]pyrene. However, there was a decrease in the expression of NMNAT2 in nerve fibers, suggesting degenerative changes. No such degeneration was found after methylparaben or phenoxyethanol at the estimated concentrations in the epidermis. These findings suggest that methylparaben and phenoxyethanol promote nerve elongation in hiPSC-SNs, whereas benzo[a]pyrene induces nerve degeneration. Such alterations may be at least partly involved in the onset and progression of sensitive skin.


Assuntos
Bioensaio , Forma Celular/efeitos dos fármacos , Etilenoglicóis/farmacocinética , Células-Tronco Pluripotentes Induzidas , Parabenos/farmacologia , Células Receptoras Sensoriais , Benzo(a)pireno/toxicidade , Avaliação Pré-Clínica de Medicamentos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Fibras Nervosas/metabolismo , Fibras Nervosas/patologia , Nicotinamida-Nucleotídeo Adenililtransferase/biossíntese , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia
11.
J Neuroinflammation ; 18(1): 227, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645458

RESUMO

BACKGROUND: Macrophages in the peripheral nervous system are key players in the repair of nerve tissue and the development of neuropathic pain due to peripheral nerve injury. However, there is a lack of information on the origin and morphological features of macrophages in sensory ganglia after peripheral nerve injury, unlike those in the brain and spinal cord. We analyzed the origin and morphological features of sensory ganglionic macrophages after nerve ligation or transection using wild-type mice and mice with bone-marrow cell transplants. METHODS: After protecting the head of C57BL/6J mice with lead caps, they were irradiated and transplanted with bone-marrow-derived cells from GFP transgenic mice. The infraorbital nerve of a branch of the trigeminal nerve of wild-type mice was ligated or the infraorbital nerve of GFP-positive bone-marrow-cell-transplanted mice was transected. After immunostaining the trigeminal ganglion, the structures of the ganglionic macrophages, neurons, and satellite glial cells were analyzed using two-dimensional or three-dimensional images. RESULTS: The number of damaged neurons in the trigeminal ganglion increased from day 1 after infraorbital nerve ligation. Ganglionic macrophages proliferated from days 3 to 5. Furthermore, the numbers of macrophages increased from days 3 to 15. Bone-marrow-derived macrophages increased on day 7 after the infraorbital nerve was transected in the trigeminal ganglion of GFP-positive bone-marrow-cell-transplanted mice but most of the ganglionic macrophages were composed of tissue-resident cells. On day 7 after infraorbital nerve ligation, ganglionic macrophages increased in volume, extended their processes between the neurons and satellite glial cells, and contacted these neurons. Most of the ganglionic macrophages showed an M2 phenotype when contact was observed, and little neuronal cell death occurred. CONCLUSION: Most of the macrophages that appear after a nerve injury are tissue-resident, and these make direct contact with damaged neurons that act in a tissue-protective manner in the M2 phenotype. These results imply that tissue-resident macrophages signal to neurons directly through physical contact.


Assuntos
Transplante de Medula Óssea/métodos , Crescimento Celular , Gânglios Sensitivos/patologia , Macrófagos/patologia , Traumatismos dos Nervos Periféricos/patologia , Células Receptoras Sensoriais/patologia , Animais , Gânglios Sensitivos/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Traumatismos dos Nervos Periféricos/imunologia , Traumatismos dos Nervos Periféricos/terapia , Células Receptoras Sensoriais/imunologia
12.
Eur J Histochem ; 65(s1)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34664808

RESUMO

Dorsal root ganglia (DRGs) are clusters of sensory neurons that transmit the sensory information from the periphery to the central nervous system, and satellite glial cells (SGCs), their supporting trophic cells. Sensory neurons are pseudounipolar neurons with a heterogeneous neurochemistry reflecting their functional features. DRGs, not protected by the blood brain barrier, are vulnerable to stress and damage of different origin (i.e., toxic, mechanical, metabolic, genetic) that can involve sensory neurons, SGCs or, considering their intimate intercommunication, both cell populations. DRG damage, primary or secondary to nerve damage, produces a sensory peripheral neuropathy, characterized by neurophysiological abnormalities, numbness, paraesthesia and dysesthesia, tingling and burning sensations and neuropathic pain. DRG stress can be morphologically detected by light and electron microscope analysis with alterations in cell size (swelling/atrophy) and in different sub-cellular compartments (i.e., mitochondria, endoplasmic reticulum, and nucleus) of neurons and/or SGCs. In addition, neurochemical changes can be used to portray abnormalities of neurons and SGC. Conventional immunostaining, i.e., immunohistochemical detection of specific molecules in tissue slices can be employed to detect, localize and quantify particular markers of damage in neurons (i.e., nuclear expression ATF3) or SGCs (i.e., increased expression of GFAP), markers of apoptosis (i.e., caspases), markers of mitochondrial suffering and oxidative stress (i.e., 8-OHdG), markers of tissue inflammation (i.e., CD68 for macrophage infiltration), etc. However classical (2D) methods of immunostaining disrupt the overall organization of the DRG, thus resulting in the loss of some crucial information. Whole-mount (3D) methods have been recently developed to investigate DRG morphology and neurochemistry without tissue slicing, giving the opportunity to study the intimate relationship between SGCs and sensory neurons in health and disease. Here, we aim to compare classical (2D) vs whole-mount (3D) approaches to highlight "pros" and "cons" of the two methodologies when analysing neuropathy-induced alterations in DRGs.


Assuntos
Gânglios Espinais/patologia , Neuralgia/patologia , Animais , Humanos , Imageamento Tridimensional , Microscopia Confocal , Neuroglia/patologia , Células Receptoras Sensoriais/patologia
13.
Cells ; 10(9)2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34571835

RESUMO

Unraveling the cellular and molecular mechanisms of spinal cord injury is fundamental for our possibility to develop successful therapeutic approaches. These approaches need to address the issues of the emergence of a non-permissive environment for axonal growth in the spinal cord, in combination with a failure of injured neurons to mount an effective regeneration program. Experimental in vivo models are of critical importance for exploring the potential clinical relevance of mechanistic findings and therapeutic innovations. However, the highly complex organization of the spinal cord, comprising multiple types of neurons, which form local neural networks, as well as short and long-ranging ascending or descending pathways, complicates detailed dissection of mechanistic processes, as well as identification/verification of therapeutic targets. Inducing different types of dorsal root injury at specific proximo-distal locations provide opportunities to distinguish key components underlying spinal cord regeneration failure. Crushing or cutting the dorsal root allows detailed analysis of the regeneration program of the sensory neurons, as well as of the glial response at the dorsal root-spinal cord interface without direct trauma to the spinal cord. At the same time, a lesion at this interface creates a localized injury of the spinal cord itself, but with an initial neuronal injury affecting only the axons of dorsal root ganglion neurons, and still a glial cell response closely resembling the one seen after direct spinal cord injury. In this review, we provide examples of previous research on dorsal root injury models and how these models can help future exploration of mechanisms and potential therapies for spinal cord injury repair.


Assuntos
Traumatismos da Medula Espinal/patologia , Medula Espinal/patologia , Raízes Nervosas Espinhais/patologia , Animais , Axônios/patologia , Gânglios Espinais/patologia , Humanos , Regeneração Nervosa/fisiologia , Neuroglia/patologia , Células Receptoras Sensoriais/patologia
14.
Cell Rep Med ; 2(7): 100345, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34337561

RESUMO

Hereditary sensory neuropathy type 1 (HSN1) is caused by mutations in the SPTLC1 or SPTLC2 sub-units of the enzyme serine palmitoyltransferase, resulting in the production of toxic 1-deoxysphingolipid bases (DSBs). We used induced pluripotent stem cells (iPSCs) from patients with HSN1 to determine whether endogenous DSBs are neurotoxic, patho-mechanisms of toxicity and response to therapy. HSN1 iPSC-derived sensory neurons (iPSCdSNs) endogenously produce neurotoxic DSBs. Complex gangliosides, which are essential for membrane micro-domains and signaling, are reduced, and neurotrophin signaling is impaired, resulting in reduced neurite outgrowth. In HSN1 myelinating cocultures, we find a major disruption of nodal complex proteins after 8 weeks, which leads to complete myelin breakdown after 6 months. HSN1 iPSC models have, therefore, revealed that SPTLC1 mutation alters lipid metabolism, impairs the formation of complex gangliosides, and reduces axon and myelin stability. Many of these changes are prevented by l-serine supplementation, supporting its use as a rational therapy.


Assuntos
Axônios/metabolismo , Gangliosídeos/metabolismo , Neuropatias Hereditárias Sensoriais e Autônomas/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Modelos Biológicos , Neuroglia/metabolismo , Serina/farmacologia , Envelhecimento/patologia , Axônios/efeitos dos fármacos , Axônios/ultraestrutura , Sequência de Bases , Caspase 3/metabolismo , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Humanos , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/ultraestrutura , Bainha de Mielina/metabolismo , Fatores de Crescimento Neural/metabolismo , Neuroglia/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos , Proteína Nodal/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia , Células Receptoras Sensoriais/ultraestrutura , Transdução de Sinais/efeitos dos fármacos , Esfingolipídeos/metabolismo , Transcriptoma/genética
15.
FASEB J ; 35(9): e21766, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34383976

RESUMO

Bardet-Biedl syndrome (BBS) is a hereditary genetic disorder that results in numerous clinical manifestations including olfactory dysfunction. Of at least 21 BBS-related genes that can carry multiple mutations, a pathogenic mutation, BBS1M390R, is the single most common mutation of clinically diagnosed BBS outcomes. While the deletion of BBS-related genes in mice can cause variable penetrance in different organ systems, the impact of the Bbs1M390R mutation in the olfactory system remains unclear. Using a clinically relevant knock-in mouse model homozygous for Bbs1M390R, we investigated the impact of the mutation on the olfactory system and tested the potential of viral-mediated, wildtype gene replacement therapy to rescue smell loss. The cilia of olfactory sensory neurons (OSNs) in Bbs1M390R/M390R mice were significantly shorter and fewer than those of wild-type mice. Also, both peripheral cellular odor detection and synaptic-dependent activity in the olfactory bulb were significantly decreased in the mutant mice. Furthermore, to gain insight into the degree to which perceptual features are impaired in the mutant mice, we used whole-body plethysmography to quantitatively measure odor-evoked sniffing. The Bbs1M390R/M390R mice showed significantly higher odor detection thresholds (reduced odor sensitivity) compared to wild-type mice; however, their odor discrimination acuity was still well maintained. Importantly, adenoviral expression of Bbs1 in OSNs restored cilia length and re-established both peripheral odorant detection and odor perception. Together, our findings further expand our understanding for the development of gene therapeutic treatment for congenital ciliopathies in the olfactory system.


Assuntos
Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/terapia , Ciliopatias/genética , Ciliopatias/terapia , Percepção Olfatória/genética , Animais , Cílios/genética , Modelos Animais de Doenças , Feminino , Terapia Genética/métodos , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Mutação/genética , Bulbo Olfatório/patologia , Células Receptoras Sensoriais/patologia , Olfato/genética
16.
Free Radic Res ; 55(7): 757-775, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34238089

RESUMO

The mechanistic interactions among redox status of leukocytes, muscle, and exercise in pain regulation are still poorly understood and limit targeted treatment. Exercise benefits are numerous, including the treatment of chronic pain. However, unaccustomed exercise may be reported as undesirable as it may contribute to pain. The aim of the present review is to evaluate the relationship between oxidative metabolism and acute exercise-induced pain, and as to whether improved antioxidant capacity underpins the analgesic effects of regular exercise. Preclinical and clinical studies addressing relevant topics on mechanisms by which exercise modulates the nociceptive activity and how redox status can outline pain and analgesia are discussed, in sense of translating into refined outcomes. Emerging evidence points to the role of oxidative stress-induced signaling in sensitizing nociceptor sensory neurons. In response to acute exercise, there is an increase in oxidative metabolism, and consequently, pain. Instead, regular exercise can modulate redox status in favor of antioxidant capacity and repair mechanisms, which have consequently increased resistance to oxidative stress, damage, and pain. Data indicate that acute sessions of unaccustomed prolonged and/or intense exercise increase oxidative metabolism and regulate exercise-induced pain in the post-exercise recovery period. Further, evidence demonstrates regular exercise improves antioxidant status, indicating its therapeutic utility for chronic pain disorders. An improved comprehension of the role of redox status in exercise can provide helpful insights into immune-muscle communication during pain modulatory effects of exercise and support new therapeutic efforts and rationale for the promotion of exercise.


Assuntos
Analgesia/efeitos adversos , Exercício Físico , Músculo Esquelético/patologia , Nociceptores/patologia , Estresse Oxidativo , Dor/patologia , Células Receptoras Sensoriais/patologia , Humanos , Músculo Esquelético/metabolismo , Nociceptores/imunologia , Nociceptores/metabolismo , Oxirredução , Dor/etiologia , Dor/metabolismo , Células Receptoras Sensoriais/imunologia , Células Receptoras Sensoriais/metabolismo
17.
Immunity ; 54(7): 1374-1376, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260885

RESUMO

In a recent issue of Nature, Hoeffel et al. describe a novel pathway of sterile tissue repair utilizing a mouse model of sunburn. This wound healing pathway is coordinated by sensory neuron-derived TAFA4 that induces IL-10 production from Tim4+ dermal macrophages to prevent sustained inflammation and the emergence of tissue fibrosis.


Assuntos
Células Receptoras Sensoriais/patologia , Queimadura Solar/patologia , Cicatrização/fisiologia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Fibrose/metabolismo , Fibrose/patologia , Inflamação/metabolismo , Inflamação/patologia , Interleucina-10/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Transdução de Sinais/fisiologia , Pele/metabolismo , Pele/patologia , Queimadura Solar/metabolismo
18.
Respir Physiol Neurobiol ; 293: 103720, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34146730

RESUMO

The pathogenesis of obstructive sleep apnea (OSA) remains controversial. The role of anatomic stenosis is indisputable, and neural regulation of the upper airway remains to be elucidated. The upper airway maintains patency through the upper airway reflex. Lesions in any link of the reflex can increase the collapsibility of the upper airway. In this study, we investigated sensorimotor nerve lesions and their possible relationship with OSA. Tissue samples were obtained from the pharyngopalatine arch in 47 patients with OSA and 45 control participants to examine changes in the expression levels of myelin basic protein (MBP) and agrin through immunohistochemistry and western blotting. Downregulation of MBP in the mucosa reflects myelinated degeneration of mucosal sensory nerve axons, whereas upregulation of agrin in the neuromuscular junction reflects synaptic regeneration following denervation. The two neural factors correlate significantly with polysomnographic parameters, such as the apnea hypopnea index and lowest oxygen saturation. Our findings suggest that sensorimotor nerve damage in the upper airway of patients with OSA may be associated closely with the mechanism of OSA.


Assuntos
Agrina/metabolismo , Axônios/patologia , Proteína Básica da Mielina/metabolismo , Junção Neuromuscular/patologia , Mucosa Respiratória/inervação , Células Receptoras Sensoriais/patologia , Apneia Obstrutiva do Sono , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Gravidade do Paciente , Polissonografia , Apneia Obstrutiva do Sono/metabolismo , Apneia Obstrutiva do Sono/patologia , Apneia Obstrutiva do Sono/fisiopatologia , Apneia Obstrutiva do Sono/cirurgia , Adulto Jovem
19.
Neurosci Lett ; 760: 136087, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34182057

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a somatosensory axonopathy in cancer patients receiving any of a variety of widely-use antitumor agents. CIPN can lead to long-lasting neuropathic pain that limits the dose or length of otherwise life-saving cancer therapy. Accumulating evidence over the last two decades indicates that many chemotherapeutic agents cause mitochondrial injury in the peripheral sensory nerves by disrupting mitochondrial structure and bioenergetics, increasing nitro-oxidative stress and altering mitochondrial transport, fission, fusion and mitophagy. The accumulation of abnormal and dysfunctional mitochondria in sensory neurons are linked to axonal growth defects resulting in the loss of intraepidermal nerve fibers in the hands and feet, increased spontaneous discharge and the sensitization of peripheral sensory neurons that provoke and promote changes in the central nervous system that establish a chronic neuropathic pain state. This has led to the propose mitotoxicity theory of CIPN. Strategies that improve mitochondrial function have shown success in preventing and reversing CIPN in pre-clinical animal models and have begun to show some progress toward translation to the clinic. In this review, we will review the evidence for, the causes and effects of and current strategies to target mitochondrial dysfunction in CIPN.


Assuntos
Antineoplásicos/efeitos adversos , Mitocôndrias/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neuralgia/induzido quimicamente , Células Receptoras Sensoriais/efeitos dos fármacos , Animais , Axônios/efeitos dos fármacos , Axônios/patologia , Modelos Animais de Doenças , Humanos , Mitocôndrias/patologia , Neuralgia/patologia , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/patologia
20.
Transl Res ; 236: 87-108, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34029747

RESUMO

Type 2 diabetes is associated with several potential comorbidities, among them impaired wound healing, chronic ulcerations, and the requirement for lower extremity amputation. Disease-associated abnormal cellular responses, infection, immunological and microvascular dysfunction, and peripheral neuropathy are implicated in the pathogenesis of the wound healing impairment and the diabetic foot ulcer. The skin houses a dense network of sensory nerve afferents and nerve-derived modulators, which communicate with epidermal keratinocytes and dermal fibroblasts bidirectionally to effect normal wound healing after trauma. However, the mechanisms through which cutaneous innervation modulates wound healing are poorly understood, especially in humans. Better understanding of these mechanisms may provide the basis for targeted treatments for chronic diabetic wounds. This review provides an overview of wound healing pathophysiology with a focus on neural involvement in normal and diabetic wound healing, as well as future therapeutic perspectives to address the unmet needs of diabetic patients with chronic wounds.


Assuntos
Diabetes Mellitus/patologia , Pele/inervação , Cicatrização , Animais , Denervação , Modelos Animais de Doenças , Humanos , Neuropeptídeos/metabolismo , Células Receptoras Sensoriais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...